
IJCAT - International Journal of Computing and Technology, Volume 5, Issue 9, September 2018
ISSN (Online): 2348-6090
www.IJCAT.org
Impact Factor: 0.835

102

A Tool to Mitigate Denial of Service Attacks on

Wired Networks

1 George Kyambadde; 2 John Ngubiri

1 School of Business and Applied Technology, Clarke International University,

Kampala, Uganda

2 College of Computing and Information Sciences, Makerere University,

Kampala, Uganda

Abstract - Presently, several institutions share information, resources, and files over computer networks. Network environments

are susceptible to various security risks including computer viruses, Trojans, and malicious malware, making networks inefficient

due to exhausted bandwidth and computing resources. Ultimately, compromised networks/servers are made unavailable to

legitimate users. Such a security problem is called a Denial-of-Service (DoS) attack. It is imperative to mitigate DoS attacks

immediately. This study presented a tool based on a packet filtering approach, used to mitigate flooding attacks. This was an

experimental study conducted in an environment similar to the production environment of the project case study. The developed

prototype consists of the mitigation and tracking modules. To evaluate the responsiveness of the proposed system, its

performance was compared with an Uncomplicated Firewall (ufw) (Ubuntu default firewall), we experimented with the firewall

and the proposed system independently but in similar environment. Results indicated that the prototype system ably mitigated the

DoS flooding attacks (UDP and ICMP flooding attacks) and also responded fairly faster than Ubuntu standard firewall.

Keywords - UDP flooding attack, ICMP flooding attack, Mitigation, Firewall.

1. Introduction

Networked systems are popular with computerized

organizations. This is because they cut down

operational costs, improve efficiency, and increase

satisfaction to customers. The access networked

systems give to legitimate users can also be got by

malicious users. As such, these systems are prone to a

number of attacks including but not limited to denial

of service (DoS) attacks.

DoS attack is a malicious attempt to disrupt the

services provided by networks or servers. DoS

attacks have recently become a major security threat

to networks [1]. The power of a DoS attack is

amplified by incorporating over thousands of zombie

machines through botnets [2]. Leveraging botnets and

high-speed network technologies, modern DoS

attacks exceed the scale of 300 Gbps becoming a

major threat on the Internet [3]. Attack targets

include businesses and media outlets, service

providers (like Domain Name System (DNS)), and

Web portals. A sophisticated DoS attack can be

mounted by attackers without advanced technical

skills using various advanced attacking toolkits freely

available on the Internet [4] such as LOIC (low-orbit

ion cannon) [5]. DoS attacks like other security

attacks are motivated by financial, political, and

ideological benefits [6]. Regardless of the motivation,

they have similar impacts such as lost revenue,

increased expenses, lost customers, and reduced

consumer trust. With little or no warning, a DoS

attack can easily exhaust the computing and

communication resources of its target within a short

period.

Many mitigation mechanisms have been proposed to

combat DoS attacks. There are two popular

mechanisms that mitigate DoS attacks: packet

filtering and rate limiting. In packet filtering all

incoming packets will be discarded if they match the

characteristics of attack traffic [7]. In rate-limiting all

relevant incoming packets will be discarded with a

certain attack probability [7].

This paper presents a possible way to protect

networked systems in case of DoS attacks.

The rest of the paper is organized as follows; in

section 2 we present the related work, in section 3 we

describe the methodology of the study, in section 4

we describe the design and implementation of the

tool. Test results of the implementation are presented

in section 5. Finally, in section 6 and 7, we provide a

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 9, September 2018
ISSN (Online): 2348-6090
www.IJCAT.org
Impact Factor: 0.835

103

discussion of the test results and a conclusion

respectively.

2. Related work

A research done by AL-Musawi eta al. [8] discusses

a packet filtering technique to defend against DoS

attacks using IPTABLES. In the technique discussed,

every time an incoming packet is filtered against, the

system has to decide whether it matches the

predefined rules in the IPTABLES for malicious

packets. A Similar study also discusses a framework

to mitigate DoS attack using the IPTABLES’ filtering

technique [9].

Hop-Count filtering is a mechanism proposed by C.

Jin et al. [10] to counter spoofed IP address DDoS

attacks. In this mechanism, information about a

source IP address and its corresponding hops from a

destination are recorded in a table at the destination

side when the destination is not under attack. Once an

attack alarm is raised, the victim inspects the

incoming packets source IP addresses and their

corresponding hops to differentiate the spoofed

packets. It is not necessary for routers to collaborate

mutually in this mechanism; however, it is difficult to

ensure the integrity and accuracy of the source IP

addresses and their corresponding hops from the

victim. In other words, attackers can spoof IP

addresses with the same hop-count as their machines.

Moreover, legitimate packets can be identified as

spoofed ones if their IPs to hop-count mappings are

inaccurate or if the hop-count updates have a delay.

Regardless of the point of deployment, such

mechanisms require that, every time the system has

to decide whether the incoming packets match a

predefined set of rules for malicious traffic, even for

similar packets. This is somewhat costly in terms of

the processing. The proposed prototype not only

supports the importance of IPTABLES in mitigating

DoS attacks but has an added tracking module that

monitors the state of filtered traffic with respect to

subsequent incoming traffic.

3. Methodology

The generic methodology for this study was

experimental. This approach allowed for a more

realistic environment, which allowed the researcher

to set up DoS experiments using real traffic and

attack methods; the approach also offered realistic

parameters such as delays, packet loss, and user

throughput [10]. This experimental set up has been

used in recent related research [8] [9] [10]. During

the experimentations, traces were got from live

execution of the different DoS attacks under the

study scope. A DoS traffic test bed was set up for the

purpose of conducting this study, it involved the

attacking hosts, a server machine having various

configurations and the proposed mitigation tool.

Mitigation involved the identification of the

offending IPs which, in this case were sometimes

hidden or spoofed. Once the malicious IPs were

identified, the system would then drop the volatile

traffic stopping it from reaching the victim. The

proposed prototype system was evaluated against the

standard Ubuntu firewall.

3.1 Experimentation

The experiments were done at Clarke International

University, an academic institution which

implements computerized systems like human

resources, student information management, finance

and backup systems. These systems serve to facilitate

scheduling, record attendance for staff and issuing

computerized reporting.

All the experiments were performed in a computer

laboratory environment that had no access to the

institution’s productive network or the Internet to

prevent accidental damage to the remaining network

infrastructure and its systems. The attacks targeted

against a realistic staging environment that was as

similar as possible to production system.

3.1.1 Simulation Setup

The setup consisted of three computers and a D-Link

wireless router as shown in Fig 1. All the computers

had Ubuntu 12.04 and default services running on

them. The D-Link wireless router was an 802.11 a/g

router and had a WAN port along with 4 LAN ports.

Each of the machines connected to the LAN port of

the router using a straight cable. With the inbuilt

DHCP server, the connected machines were

dynamically assigned respective IP addresses as

shown in Fig. 1. Each of the machines played the role

of a target, attacker, or client, as shown in Fig 1.

Successful attacks were important in the simulation

and hence, all firewalls were disabled on all systems

to allow for the experimentation of the implemented

tool. Each of the simulation required a separate attack

script to be executed in the attacker’s machine. For

all the attack simulations, we measured bandwidth

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 9, September 2018
ISSN (Online): 2348-6090
www.IJCAT.org
Impact Factor: 0.835

104

utilization using Speedometer [11] installed on the

target machine.

3.1.2 Simulation of Selected Attacks

The simulation process used the UDP and ICMP

flooding attacks.

UDP Flooding attack

With the hping3 tool [12], a streams of UDP packets

sent to several ports of the victim machine had the

victim busy sending ICMP messages to the attacker’s

machine. This blocks legitimate requests from getting

into the system. The hping3 tool initiates UDP

packets in the DoS client, and speedometer started in

the web server after regular intervals during the

attack. Fig 2 shows the initial setup for the attack

simulations and Fig 3 shows the communication state

of the systems after the attack is launched.

Fig 2 Communication among various systems before the attack

Fig 3 Systems unable to communicate after the UDP flood attack is

launched.

ICMP Flooding attack

In this simulation, using the hping3 tool [12] the DoS

attack client sent out lots of ICMP echo request

packets to the webserver. And since the source IP

address was spoofed, ICMP echo request and ICMP

destination unreachable packets flooded the network.

Thus, after some time, the client was not able to

communicate with the web server (target). Fig 4

shows the communication state of the systems after

the attack is launched.

Fig 4 Systems unable to communicate after ICMP flood attack is

launched

4. Design and implementation

The prototype system consists of two modules

namely; tracking module and the mitigation module.

Fig 1 Topology of the attack simulation setup.

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 9, September 2018
ISSN (Online): 2348-6090
www.IJCAT.org
Impact Factor: 0.835

105

The former consists of a daemon that tracks of the

state and the latter consists of the filtering rules that

filters IP addresses. Fig 5 shows the architecture of

the proposed DoS mitigation system.

Fig 5 Architecture of the proposed DoS mitigation system

From Fig 5, all the traffic directed to the target

machine is logged based on the packet filter rules for

specific DoS specific attacks. The log monitor then

analyses the log to identify malicious IPs sending

repetitive requests to the target client. Based on such

information, the system decides whether a DoS attack

is in progress or not.

The system takes response action to mitigate the

attack, by dropping the suspicious/ forged packets

from malicious IPs. The dropped packets are then

listed in the auto-blocked iptables text file. To

forward blocked IPs, a small program, the

update_daemon was implemented to get the listed IPs

in the auto blocked iptables text file and insert them

in an ipset.

Tracking module

This a small program, the update_daemon

implemented to get the listed IPs in the auto blocked

iptables text file and insert them in an ipset. This

introduces state in the system in that subsequent

filtering decisions are made taking into account of an

earlier decision made on similar incoming packets

based on the IP addresses listed in the ipset. Fig 6

shows the activity flow of the prevention mechanism.

Fig 6 Activity Flow of the prevention mechanismFig

Mitigation module

In order to weed out malicious clients who send

repetitive requests to the Web Server, IP address

filtering technique was used. Clients’ IP addresses

that send big repetitive streams of packets to the web

server, are blocked and added to the ipset. The ipset

is updated by the update_daemon to influence

subsequent the filtering decisions for similar

incoming packets.

5. Results

To achieve a steady state of the experiment, attacks

lasted 50 seconds, starting at 10 seconds and ending

at 60 seconds from the beginning of the run. The

metric was bandwidth. Fig 7 shows the

responsiveness of both the Firewall and the prototype

System during UDP flooding attack. Fig 8 shows the

responsiveness of both the Firewall and the prototype

System during the ICMP flooding attack.

Fig 7 Response time for both Systems during the UDP flooding

attack simulation

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 9, September 2018
ISSN (Online): 2348-6090
www.IJCAT.org
Impact Factor: 0.835

106

During the high peaks of bandwidth utilization, from

Fig 7, we see that for both systems, bandwidth

utilization decreased with time. This is due to

responsiveness of both systems to the attacks. During

a UDP flood, as the attacker sends in large amounts

of UDP packets with spoofed IP addresses, the victim

machine is forced to send excessive ICMP return

packets which do not reach the attacker (due to the

spoofed identity), thus utilizing large amounts of

bandwidth.

Fig 8 Response time for both Systems during the ICMP flooding

attack simulation

Similarly in Fig 8, during the ICMP flooding attack,

we see that for both systems, bandwidth utilization

decreased with time.

6. Discussion

The results indicated that the prototype system

responded fairly faster to the flooding attacks by a

record five seconds compared to the standard

firewall. A difference of five seconds in response

time by the prototype has the potential to halt system

damage.

The prototype’s fast performance is attributed to its

tracking module, which allows for filtering decision

making during packet blacklisting based on an earlier

decision made for similar incoming packets. Whereas

the standard firewall has to take a little bit of more

CPU time since it makes the filtering decision for

every incoming packet independent of the earlier

decision made for a similar packet.

7. Conclusion and Future Work

In this study, we designed and implemented a

prototype system capable of automatically executing

appropriate mitigation responses. The prototype has

an update_deamon module that allows for decision

making based an earlier action taken on related

packets. This module allows for a fairly faster

responsiveness compared to the standard Ubuntu

firewall as shown in the above results’ section;

ultimately, the prototype presents a more effective

solution to the problem of DoS flooding attacks

specifically on wired networks.

The prototype system is capable mitigating flooding

attacks implemented in other protocols (such as TCP

SYN flood attack). However, it is not (yet) a

comprehensive package to handle all forms of DoS

attacks such as application layer attacks. This sets the

direction of further investigations and research.

Acknowledgements

We thank Florence Nakaggwa for the invaluable

discussions and suggestions.

References

[1] Dobbins R., Morales C., Anstee D., Arruda J.,

Bienkowski T., Hollyman M., Labovitz C., Nazario J.,

Seo E., and Shah R. "Worldwide Infrastructure

Security Report. Tech. rep., Arbor Networks," 2010.

[2] David D., Guofei G., Christopher P., Wenke L. "A

Taxonomy of Botnet Structures," Proc. of Annual

Computer Security Applications Conference (ACSAC),

pp. 325-339, December 2007.

[3] [Online]. Available: www.arbornetworks.com.

[4] Kargl F.,Maier."Protecting web servers from

distributed denial of service attacks," 2001.

[5] Roman J., Radek B., Radek V., and Libor s.

"Launching distributed denial of service attacks by

network protocol exploitation," in In Proceedings of

the 2nd international conference on Applied

informatics and computing theory. AICT’11. World

Scientific and Engineering Academy and Society

(WSEAS, Stevens Point, Wisconsin, USA, 2011.

[6] Ghorbani A., Lu W. and Tavallaee . "Network

Intrusion Detection and Prevention: Concepts and

Techniques, Springer", 2010.

[7] Y. Xia, "Selective Dropping of Rate Limiting Again

Denial of Service Attacks," University of Dayton,

2016.

[8] AL-Musawi, Bahaa Qasim M., "MITIGATING

DoS/DDoS ATTACKS USING IPTABLES,"

International Journal of Engineering & Technology,

IJCAT - International Journal of Computing and Technology, Volume 5, Issue 9, September 2018
ISSN (Online): 2348-6090
www.IJCAT.org
Impact Factor: 0.835

107

pp. 101 - 111, June 2012.

[9] Chatterjee, Koushik. "Design and Development of a

framework to mitigate Dos/DDos attacks using

IPTable firewall," International Journal of Compouter

Science and Telecommunication, pp. 67 - 72, 2013.

[10] H. Wang, C. Jin, and K. G. Shin. "Defense Against

Spoofed IP Traffic Using Hop-Count Filtering,"

IEEE/ACM Trans. On Networking, vol. 15, pp. 40-53,

February 2007.

[11] I. Ward, "Speedometer 2.8 excess.org," 02 April 2015.

[Online]. Available: http://excess.org/speedometer/.

[12] G. o. Security, "GBHackers on Security," [Online].

Available: https://gbhackers.com/hping3-network-

scanner-packer-generator/. [Accessed 20 January

2016].

Authors

George Kyambadde received Bsc in Computer Science of

Makerere University in 2012. He received Msc in

Computer Science of Makerere University in 2017. He is

currently working as a Lecturer at the School of Business

and Applied Technology, Clarke International University.

His current research interests include; security, and

Machine Learning.

John Ngubiri a Senior Lecturer at the Department of

Computer Science, College of Computing and Information

Science, Makerere University. He holds a PhD in Computer

Science of Radboud University Nijmegen. His research

interests are in performance evaluation, System

optimization, security and parallel and distributed systems.

